ByteExpress: A High-Performance and Traffic-Efficient
Inline Transfer of Small Payloads over NVMe

Junhyeok Park, Junghee Lee, and Youngjae Kim

Presenter: Junhyeok Park

SOGANG Mtora e

<& UNIVERSITY 2025

The 17th ACM Workshop on July 10-11
Hot Topics in Storage and File Systems Boston, MA

Inside Today's NVMe SSDs

Recent advances in SSD technology have led to increasingly powerful devices,
with modern NVMe SSDs now equipped with substantial internal DRAM and muilti-
core ARM processors.

T TEN TR

o - - ‘ =
® ' V-NANDSSD SAMSUNG | E
970EVOPlus |

NVMe M.2 ' i

| Samsung

V-NAND V5
2 chips @ 4 Thit

Samsung $&
LPDDR4-1866 DRAM &%

features a 1 GB capacity Samsung

s Phoenix Controller
‘P features 5 ARM Cortex-R7 cores

[1] TechPowerUp. “Samsung 970 EVO Plus 1 TB SSD Specs.” TechPowerUp, accessed June 20, 2025. [link]

https://www.techpowerup.com/ssd-specs/samsung-970-evo-plus-1-tb.d61

Inside Today's NVMe SSDs

Recent advances in SSD technology have led to increasingly powerful devices,
with modern NVMe SSDs now equipped with substantial internal DRAM and muilti-
core ARM processors.

pur- = el -n‘!- ": | Lol 2w

® ' V-NANDSSD " “samsune =
970EVOPlus .
F B S— e p—
gg f,;;”_’,l‘.hf.f‘.[.’."f?;'{ CS 0. LTD. 1TB = i — --:': ‘ :’_ Samsung

5 LIH ol ot ‘ V-NAND V5 .

As these capabilities continue to evolve, SSDs are gradually shifting
from simple storage solutions to intelligent data-processing devices,

opening new opportunities for offloading and executing host-side tasks.

[1] TechPowerUp. “Samsung 970 EVO Plus 1 TB SSD Specs.” TechPowerUp, accessed June 20, 2025. [link]

https://www.techpowerup.com/ssd-specs/samsung-970-evo-plus-1-tb.d61

Computational Storage Devices

These trends have led to the emergence of new classes of computational storage
devices, including ...

« Computational SSDs (CSDs) that can execute
user’s analytics tasks such as SQL filters inside the SSD.

» Key-Value SSDs (KV-SSDs) that natively support
key-value operations within the device by bypassing traditional file systems.

Samsung SmartSSD
can achieve 2.8x faster
SQL query execution

on Parquet data [2]

showed up to 10.6x
lower write latency
than RocksDB [3]

[2] Samsung Electronics. Samsung SmartSSD Computational Storage Drive. Brochure, accessed June 20, 2025. [link]
[3] I. Park et al., "KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive Applications®, 2023 IEEE International Conference on Cluster Computing (CLUSTER). [link]

https://download.semiconductor.samsung.com/resources/brochure/Samsung%20SmartSSD%20Computational%20Storage%20Drive.pdf
https://ieeexplore.ieee.org/document/10319961

NVMe-Based New Storage Interface

To interact with these new types of devices, users commonly employ the NVMe
passthrough, wherein application-level requests, such as ...

« SQL predicates for CSDs or
» key-value pairs for KV-SSDs,
are encoded as custom NVMe Commands (CMDs) and sent directly to the device.

* 86 int nvme_submit_passthr‘|.164(int fd, unsigned long ioctl_cmd,

87 struct nvme_passthru_cmdé4 *cmd,

88 { __u64 *result) Host | KV-SSD
89

90 int err = ioctl(fd, ioctl_cmd, cmd); User) Passthrough NVMe | e’mlue

o1 Application | DUVEIGE =S Predicate | CSD
92 if (err >= 0 && result) I

= fresult = cnd->result; NVMe Passthru-based CSD & KV-SSD Interface

94 return err;

=>» enables seamless data exchange with these devices
without significantly modifying the kernel I/O stack

95 }

NVMe Passthru Function
defined in libnvme/blob/master/src/nvme/ioctl.c

https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c

NVMe-Based New Storage Interface

To interact with these new types of devices, users commonly employ the NVMe
passthrough, wherein application-level requests, such as ...

« SQL predicates for CSDs or
» key-value pairs for KV-SSDs,
are encoded as custom NVMe Commands (CMDs) and sent directly to the device.

Interestingly, a closer look at this new storage interface reveals that

the actual data payloads (i.e., SQL predicates and key-value pairs)
transferred in such requests are often small.

defined in libnvme/blob/master/src/nvme/ioctl.c

https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c

The Advent of Small, Direct I/0

CSDs process filter operations based on computation task specifications that
typically require only a table identifier and predicates since the SSD is already

aware of table schema information [4].

SELECT min(vertex_id) AS VID, min(x) as X, min(y) as Y, min(z) as Z, avg(e) AS E
FROM 'xx_36785.parquet’

WHERE x > 1.5 AND x < 1.6 ANDy > 1.5 ANDy < 1.6 AND z > 1.5 AND z < 1.6

GROUP BY vertex_id ORDER BY E;

Example SQL Query from the Laghos 3D Mesh Dataset [5]
computes per-vertex average energy in a small 3D region

Table Name

'xX_36785.parquet’ Predicate Clause
Xx > 1.5 AND x < 1.6 ANDy > 1.5 ANDy < 1.6 AND z > 1.5 AND z < 1.6

Extracted ‘Table Name’ and ‘Predicate Clause’

1001 1101 0101 0110 ... 650
Payload
Binary Encoded Message g’ F xx_36785.parquet
specifies computation task (SQL filtering) -

[4]1. Jo et al., "YourSQL: a high-performance database system leveraging in-storage computing”. Proc. VLDB Endow. 9, 12 (August 2016), 924-935. [link]
[5] Los Alamos National Laboratory. Laghos Sample Dataset. GitHub repository, accessed June 20, 2025. [link]

https://doi.org/10.14778/2994509.2994512
https://github.com/lanl-ocs/laghos-sample-dataset

The Advent of Small, Direct I/0

This results in payloads of just tens to hundreds of bytes.
= Even when expressed as a completely unoptimized SQL string without any
binary encoding, the total payload size remains small.

l"’; # Full SQL String
Table Name &

2
E 400 " Predicate Segments / %

7 7
: 7.7

VPIC Laghos Asteroid TPC-HQ! TPC-H Q2
SQL Query

Example Queries Used in CSD Works [4 - 8]
showing the lengths of full string and table/predicate segments

[4]11. Jo et al., "YourSQL: a high-performance database system leveraging in-storage computing". Proc. VLDB Endow. 9, 12 (August 2016), 924-935. [link]

[5] Los Alamos National Laboratory. Laghos Sample Dataset. GitHub repository, accessed June 20, 2025. [link]

[6] Los Alamos National Laboratory. DeepWater Impact Dataset. GitHub repository, accessed June 20, 2025. [link]

[7] Los Alamos National Laboratory. VPIC: Vector Particle-In-Cell Simulation Code. GitHub repository, accessed June 20, 2025. [link]

[8] J. Kim, "Accelerating Data Analytics Using Object-based Computational Storage System in HPC*. In Supercomputing Conference (SC23), Denver, CO, USA, 2023. [link]

https://doi.org/10.14778/2994509.2994512
https://github.com/lanl-ocs/laghos-sample-dataset
https://github.com/lanl-asteroid-impact/deep-water-impact-dataset-1
https://github.com/lanl/vpic
https://sc23.supercomputing.org/proceedings/exhibitor_forum/exhibitor_forum_pages/exforum116.html

The Advent of Small, Direct I/0

Similarly, the values processed during real-world key-value operations are often just
a few dozen bytes in size, as shown by internal workload analyses from Meta [9]
and Twitter [10].

1 128+
0.8 Obiect] ~112-127- 36K
4 JECl —— S 96-111
0.6 % soumpet Object 2ry —e— S 80.95 27K
I Assoc —a— © 6479
il Assoc 2ry —+— f 48-63- 18K
0.2+ Assoc_count —e— 3 32-47
Non SG —#— S 1631 9K
0 ' | = | 0-15
TS Ty L
10° 100 102 100 10* 10° 10 o 1 2 3 4 5 6 7 8 9
Val . (b) Request Number (100K)
alue size (bytes

Value Size Heatmap from MixGraph All_random

Value Size CDF for RocksDB as a MySQL with Its Default Parameter Settings
Storage Layer in Meta’s Data Centers

[9] Z. Cao et al., "Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook®. In Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST’20) [link]
[10] W. Daelemans et al., "Overview of PAN 2019: Bots and Gender Profiling, Celebrity Profiling, Cross-Domain Authorship Attribution and Style Change Detection. In Experimental IR Meets Multilinguality, Multi modality, and Interaction".
Proceedings of the 10th International Conference of the CLEF Association (CLEF 2019) [link]

https://dl.acm.org/doi/10.5555/3386691.3386712
https://dl.acm.org/doi/10.1007/978-3-030-28577-7_30

I
The Advent of Small, Direct |/O @

These small values are persisted individually in KV-SSDs, in accordance with the
key-value pair-level transaction model defined in the NVMe key-value extension [11].

PUe /ue) Mem Page
NVMe Command 4KB
NVMe Driver commandID
Host DRAM 1 _____ opcode |z
P key -'
PRPlist ~ pu=es :
PCle valueSize

NVMe Controller

SSD DRAM

* As a result, small direct I/O operations are a natural and frequent part of KV-SSD behavior
in real-world scenarios.

+ Although batching multiple key-value pairs into a single bulk PUT has been explored in some prior work, such
approaches may not always be applicable, particularly in use cases where fine-grained persistence is
desired for each key-value pair [12].

[11] NVM Express Inc. 2021. NVM Express Key Value Command Set Specification. Last Accessed: 2024-09-12. [link]
[12] etcd Authors. 2023. etcd Raft Log Durability and Performance. Last Accessed: 2025-05-25. [link]

https://nvmexpress.org/developers/nvme-specification/
https://etcd.io/docs/v3.5/faq/

The Advent of Small, Direct I/0

These small values are persisted individually in KV-SSDs, in accordance with the
key-value pair-level transaction model defined in the NVMe key-value extension [11].

PUT{(key,value)
Mem Page
NVMe Command 4KB
NVMe Driver commandID
Host DRAM "1 ___ opcode | _
P key -'
PRPlist ~ pe=s? :
PCle valueSize

NVMe Controller

SSD DRAM

However, despite the prevalence of small payloads, the conventional

NVMe protocol is ironically ill-suited to handle them efficiently.

[11] NVM Express Inc. 2021. NVM Express Key Value Command Set Specification. Last Accessed: 2024-09-12. [link
[12] etcd Authors. 2023. etcd Raft Log Durability and Performance. Last Accessed: 2025-05-25. [link

https://nvmexpress.org/developers/nvme-specification/
https://etcd.io/docs/v3.5/faq/

NVMe is Not Small I/O Friendly!

Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

m NVMe CMD
""" Memory Page
NVMe Driver i
HostDRAM [[T 1111 ““Payload
"""""'"" SQ -~~~ """""="---
_PCIe
completion
NVMe Controller Data Buffer
FTL
SSODRAM. . ‘i/ 0
NAND Flash J

NVMe PRP-Based Payload Transfer Mechanism

The host prepares the data in memory
pages and constructs an NVMe CMD
that specifies the (1) address and

(2) number of pages to transfer.

NVMe is Not Small I/O Friendly!

Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

Q ..\ We cMD

""" Memory Page
NVMe Driver -
HostDRAM [[T 1111 ““Payload
"""""'"" Y 0 B
€ The CMD is submitted to the NVMe
PCle)
T driver,
completion
NVMe Controller Data Buffer
FTL
SSODRAM. . ‘i/ 0
NAND Flash J

NVMe PRP-Based Payload Transfer Mechanism

NVMe is Not Small I/O Friendly!

Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe CMD

""" Memory Page
NVMe Driver .
Host DRAM ORI T 111 rayioad
"""""'"" SQ """ ""TTTmmmm
o @ The driver inserts the CMD into the
e B
------------------------------- NVMe Submission Queue (SQ).
completion
NVMe Controller Data Buffer
FTL
SSODRAM. . ‘i/ 0
NAND Flash J

NVMe PRP-Based Payload Transfer Mechanism

NVMe is Not Small I/O Friendly!

Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe CMD

NVMe Driver

Host DRAM NI T 11T

completion

¥
NVMe Controller

SSD DRAM

Memory Page

Pa yload

Data Buffer

FTL

' /0o

NAND Flash

I

NVMe PRP-Based Payload Transfer Mechanism

€) The driver triggers the doorbell
register in the PCle Base Address
Register (BAR) space to notify the
device of a new submission.

NVMe is Not Small I/O Friendly!

Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe CMD

NVMe Driver

Host DRAM IS T [[[]

completion

¥
NVMe Controller

SSD DRAM

Memory Page

Pz yload

FTL

NAND Flash

]

NVMe PRP-Based Payload Transfer Mechanism

@) The device, polling the doorbell
register, detects the submission and
performs a 64-byte Direct Memory
Access (DMA) fetch of the CMD.

NVMe is Not Small I/O Friendly!

Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe CMD

Memory Page

NVMe Driver (5] .

R
Host DRAM m “Payload

@ The controller then reads (identifies)

PCle : the indicated host page addresses
completion and page counts within PRP entries.
L :
NVMe Controller : Data Buffer
FTL
SSD DRAM

NAND Flash J
NVMe PRP-Based Payload Transfer Mechanism

NVMe is Not Small I/O Friendly!

Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe CMD
""" Memory Page
NVMe Driver .
i g —
Host DRAM I TTTT:] | Payioad
TR s
- o @ The controller copies the correspond-
Plle 1 §-----. ‘ ding pages into device DRAM via
compietion } . | 4 KB page unit DMAs.

NVMe Controller Data Buffer

FTL

' /0o

NAND Flash J
NVMe PRP-Based Payload Transfer Mechanism

SSD DRAM

I
NVMe is Not Small I/O Friendly!

Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe CMD
""" Memory Page
—»{ NVMe Driver A,
i e —
Host DRAM i]:D:E] “-Payload

et

@Finally, the device signals completion

PRl ! ______ 7_F to the host.
completion :
o : . ez
NVMe Controller : Data Buffer
FTL
SSD DRAM___ ‘f/"
NAND Flash J

NVMe PRP-Based Payload Transfer Mechanism

NVMe is Not Small I/O Friendly!

As a result, even a 32-byte payload incurs 4 KB of PCle traffic, more than 130 x
greater than the requested size.

§ 140+
16 -25
14- PCle Traffic 5120
. ar i +
1o Requested Size . @/@ ST o0 — S 100-
aa) -~ Latency @/@ /¥4 = =
glO" fo——O 15 g o, 80-
& 8 & &g
g 6 -
= 4 2
-5 5 504
2- = 20
O | T I I 1 I I | I I T T I I I I O O_
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 32 64 128 256 512 1K
Payload Size (KB) Payload Size (Bytes)
PCle Traffic and Transfer Latency Traffic Amplification Factor

=» This significant traffic bloating can lead to increased latency and unnecessary
power consumption, making it a critical bottleneck for frequent, small direct I/Os.

NVMe Scatter-Gather List ?

NVMe also supports Scatter-Gather Lists (SGLs), which can enable fine-grained

DMA transfer for small payloads.

However, SGLs are not supported across

all NVMe devices (because it is not mandatory),
and even when supported, the Linux kernel

is configured by default to use them

only for payloads larger than 32 KB.

76 static unsigned int sgl_threshold = SZ_32K;

77 module_param(sgl_threshold, uint, ©644);

78 MODULE_PARM_DESC(sgl_threshold,

79 "Use SGLs when average request segment size is larger or equal to "
80 "this size. Use © to disable SGLs.");

Linux Kernel’s NVMe SGL Size Threshold
defined in drivers/nvme/host/pci.c

Physical Memory

Page-0 / Pageq— Page-2 Page-3 Page-4 Page—5
Page—6 | Paggi7 Page-8 Page-9 Page—rre——l Page-11
Page-12 Pqé.ef13 Page-14 P%99715 Page—-16 Page-17
Page-18 || Page-19 Page-20 ||/ Pag - Page-22 /| Pagey23
/' /Scatter list
Scatter | é Scatt _» Scatter [—3| Scatt ..9 Scatt
*pageo’g_j; *page xpage o «page b *page o
Offset # Offset @ Offset Offset ¢ Offset ®
dma_address dma_address dma_address dma_address dma_address
Length Length Length Length Length

——
-
-
-
-~
-
-
-
e m———
-~
-~
-
-
-
-
-~
-

DMA

>
Transfer />
A

NVMe SGL-Based Payload Transfer

Mechanism

=>» Accordingly, this work focuses on optimizing PRP-based transfers.

https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c
https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c
https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c
https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c

I
Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:
(1) Bypassing the NVMe stack via

Qyte I/F Write
PCle Memory-Mapped I/0 (MMIO) to ‘-Dab[Byte I/F Driver ~Payload
enable byte-level writes directly to the device. A,
Host DRAM PCIe MMIO
- Ex) 2B-SSD [ISCA 18], ByteFS [ASPLOS "25]
PCle
S
I/F Controll
ﬂlf a user application issues a Byte yte UF Controller
Interface write request, -
Log | Byte I/F Buffer
FTL SSD DRAM

I/0 NAND Flash .IJ

I
Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:

(1) Bypassing the NVMe stack via Byte I/F Write
PCle Memory-Mapped I/0 (MMIO) to “[{Byte I/F Driver -+ ~Payload
g O

‘ PCIe MMIO

enable byte-level writes directly to the device. -
Host DRAM

. Ex) 2B-SSD [ISCA 18], ByteFS [ASPLOS "25]

PCle
(CXL)
@the data is memory-copied to the Byte I/F Controller
device-mapped PCle BAR region. —
Log | Byte I/F Buffer
il SSD DRAM

/0 NAND Flash _IJ

Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:

(1) Bypassing the NVMe stack via Byte I/F Write
PCle Memory-Mapped I/O (MMIO) to - [F»{Byte I/F Driver -+ " Payload
enable byte-level writes directly to the device. WA,
Host DRAM | T—

. Ex) 2B-SSD [ISCA 18], ByteFS [ASPLOS "25]

€ Writing to the device-mapped PCle
BAR region results in a memory

Byte I/F Controller

write transaction over PCle, which

_ ' vz
auto_matlcally u_pdate_s the corres- [gg Byte I/F Buffer
ponding address in device memory. FTL SSD DRAM

I/0 NAND Flash .IJ

Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:

(1) Bypassing the NVMe stack via Byte I/F Write
PCle Memory-Mapped I/0 (MMIO) to ~[tByte IF Driver }--- ~Payload

‘ PCIe MMIO

enable byte-level writes directly to the device. -
Host DRAM

. Ex) 2B-SSD [ISCA 18], ByteFS [ASPLOS "25]

@) If needed, the written data is coor-

dinated with data written through Byte I/F;?ntrouer
the Block Interface, thru transaction (4)

logs or similar methods to maintain — ez
consistency. merge |29 BYte I/F Buffer

FTL later SSD DRAM

I/0 NAND Flash .IJ

Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:

(1) Bypassing the NVMe stack via
PCle Memory-Mapped I/0 (MMIO) to
enable byte-level writes directly to the device.

. Ex) 2B-SSD [ISCA 18], ByteFS [ASPLOS "25]

©Then, it notifies the host of the
completion.

Byte I/F Write

{_H Byte I/F‘Drlver + E ’,/-Payload

Host DRAM

‘ PCIe MMIO

PCle
CXL
IS | p—
e Byte I/F Controller
A 4
| 7777 N
— Byte I/F Buffer
merge
_____) _lter______ SSDDRAM
I/0 NAND Flash .IJ

Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:

(1) Bypassing the NVMe stack via Byte I/F Write
PCle Memory-Mapped 1/0 (MMIO) to -[J{Byte JF Driver - ~Payload
enable byte-level writes directly to the device. WA,
Host DRAM | E—

. Ex) 2B-SSD [ISCA 18], ByteFS [ASPLOS "25]

PCle
* Pros) (CXL)
* This design allows for low-latency, fine-grained completion ————————"
data transfers [13] =& High-Performance Byte I/F Controller
« Can be integrated into a NVMe Controller Memory Buffer (CMB) A 4
concept = Opportunity for Standardization - [0 |-
« Can be extended to utilize PCle-based memory expansion ore Byte I/F Buffer
protocols such as Compute Express Link (CXL). FTL /ategr SSD DRAM
/0 NAND Flash _IJ

[13] D. -H. Bae et al., "2B-SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). [link]

https://ieeexplore.ieee.org/document/8416845

Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:

(1) Bypassing the NVMe stack via Byte I/F Write
PCle Memory-Mapped I/0 (MMIO) to [J»Byte I/F Driver }--- ~Payload

‘ PCIe MMIO

enable byte-level writes directly to the device. -
Host DRAM

. Ex) 2B-SSD [ISCA 18], ByteFS [ASPLOS "25]

PCle
« Cons) (CXL)
« The device must be (1) significantly modified to include completion ————————"
a new dedicated buffer memory, and (2) maintain transactional Byte I/F Controller
coordination between the new Byte Interface for small payloads A 4
and the existing block-based 1/0 path for large payloads. (2
=>» High Design and Manufacturing Costs _ | Byte I/F Buffer
« On the host-side, NVMe passthrough-based APIs cannot be FTL merge
later SSD DRAM

reused, requiring the development of a new interface layer.
=> Interface Redesign Overhead

I/0 NAND Flash .IJ

Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:

(1) Bypassing the NVMe stack via Byte I/F Write
PCle Memory-Mapped 1/0 (MMIO) to -[J{Byte JF Driver - ~Payload
enable byte-level writes directly to the device. A
Host DRAM ‘PCIe MMIO

. Ex) 2B-SSD [ISCA 18], ByteFS [ASPLOS "25]

PCle
 Cons) (CXL)

This method requires substantial modifications to SSD architecture
and controller firmware, making it difficult to integrate with

existing NVMe-based CSDs or KV-55Ds.

Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:
(2) Embedding the payload inline within NVMe CMDs- .

one or more custom NVMe CMDs and %’E_:‘X% ~Payload
transmitting them in fragments. NvMe Driver | 2= Il
W]j] Host DRAM

« Ex) BandSlim [ICPP "24], [I[EEE Micro "25]

It embeds small payload fragments
directly into CMD fields and issues

a sequence of NVMe CMDs (each
carrying a portion of the data) to
create fine-grained PCle traffic patterns.

Data Buffer
FTL

' /o

NAND Flash _IJ

Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:
(2) Embedding the payload inline within NVMe CMDs- .

one or more custom NVMe CMDs and M ~Payload
NVMe Driver | "2 == [7zg

transmitting them in fragments.
Host DRAM

« Ex) BandSlim [ICPP "24], [I[EEE Micro "25]

* Pros)

By utilizing the NVMe passthrough, this method offers
the advantage of requiring no significant modifications to SSD
architectures and protocols. = Relatively Easy Integration

Data Buffer

 Cons)

FTL
* Frequent issuance of CMDs significantly increases protocol
overhead, particularly as the number of fragments grows.

' /0
=>» As a result, when the payload size exceeds just a few

dozen bytes (e.g., 64 bytes), the cost of repeated CMD NAND Flash .IJ
submission becomes a major performance bottleneck.

I
Existing Approaches Work! But...

Prior works have attempted to address this issue using two primary approaches:

(2) Embedding the payload inline within NVMe CMDs- .
one or more custom NVMe CMDs and @’H_‘% ;~Payload
transmitting them in fragments. NvMe Driver | 2= Il

Host DRAM

« Ex) BandSlim [ICPP "24], [I[EEE Micro "25]

This method loses scalability for larger payloads
due to repeated CMD generation and processing overhead
caused by its mandatory serialization.

dozen bytes (e.g., 64 bytes), the cost of repeated CMD NAND Flash H
submission becomes a major performance bottleneck.

Proposed Solution: ByteExpress

In our paper, we present ByteExpress, a novel mechanism that efficiently transmits
small payloads while avoiding the said drawbacks of existing solutions.

At the heart of ByteExpress is a concise yet powerful insight:

“NVMe already enables fine-grained data delivery over PCle.”

=» This capability is embedded in the design of the NVMe SQ, where the host places a CMD
in memory and the device performs a 64-byte DMA fetch from the SQ’s tail.

If we reinterpret the CMD itself as a payload or a portion of payload, this mechanism
effectively becomes a built-in fine-grained 1/O path.

= ByteExpress builds on this insight by placing the actual payload into the SQ in 64-byte chunks.

Proposed Solution: ByteExpress

ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

Q. e cMp

,:-Pay/oad
NVMe Driver Y
Host DRAM | |
e IR U
€ The NVMe CMD is issued to the NVMe [|
driver as usual.
PCle
NVMe Controller Data Buffer
FTL
SSD DRAM

NAND Flash

Proposed Solution: ByteExpress

ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

NVMe CMD
""" ,:'Payload
NVMe Driver v
Host DRAM 9‘ |
_ _ BaRSpace SQ -TTTToooos
@) The NVMe CMD is submitted
to the SQ as usual.
PCle
NVMe Controller Data Buffer
FTL
SSD DRAM

NAND Flash

I
Proposed Solution: ByteExpress

ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

NVMe CMD
y
NVMe Drivwacopm
Host DRAM]

€) (Here's where it differs) the payload
is immediately appended to the SQ
right after the just-submitted CMD, PCle
in 64B units. .

NVMe Controller Data Buffer

FTL

SSD DRAM

Proposed Solution: ByteExpress

ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

NVMe CMD
oY ~Payload
NVMe Driver |22 - _
Host DRAM i]
‘ ------- SQ -----------
@) The driver rings the doorbell (4)
register to notify the device of
a hew submission, just as usual. PCe |
2
NVMe Controller Data Buffer
FTL

SSD DRAM

I
Proposed Solution: ByteExpress

ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

NVMe CMD
opY ~Payload
NVMe Driver 4" W,
Host DRAM ‘ []
-------- [} T AR ERS

@ 1f the device detects ByteExpress
semantics when fetching a CMD,
it fetches the following payload = = =5 ____. .
chunks from the same SQ in one v B
shot and copies them directly into NVMe Controller Jgu... ™™ Data Buffer

the data buffer. FTL

' /0

NAND Flash J-l

SSD DRAM

Proposed Solution: ByteExpress

ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

@ Finally, the device signals completion
to the host, as usual.

NVMe CMD
""" opY ,:'Pay/oad
—»{ NVMe Drivw’-
Host DRAM [|
"""" i' 1) 0
PCle
(6]

¥
NVMe Controller Jgu... 2%

SSD DRAM

Data Buffer

FTL

' /o

NAND Flash

|

ByteExpress — Key Design Challenges

Challenge#1: Identifying the Payload

« The NVMe driver already has full knowledge of the payload at submission time.
* The payload size is encoded in the data length field of the NVMe 1/O CMD.

* The address is specified through the PRP entry fields during CMD construction.

» The field values provided via the nume_passthru_cmd structure are preserved
in the corresponding bio request, which is fully accessible to the NVMe driver.

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

spin_lock(&nvmeq->sq_lock);

size_t data_lenl = blk_rq_bytes(req); Pay|oad Size

struct nvme_command *cmd = &iod->cmd;

if (cmd->common.opcode == ©xA8) { // ByteExpress Command
int slots_needed = 1 + DIV_ROUND_UP(data_len, 64); // 1 for cmd + N payloads

nvme_sq_copy_cmd(nvmeq, &iod->cmd);

void *kaddr = bio_data(req->bio); // PRP-mapped buffer address

Address if (!kaddr) {
printk(KERN_ERR "Failed to get host buffer address from PRP\n");

spin_unlock(&nvmeq->sq_lock);
return BLK_STS_IOERR;

}

ByteExpress-Extended Linux Kernel NVMe Driver
open-sourced at https://github.com/junttang/byteexpress

https://github.com/junttang/byteexpress

ByteExpress — Key Design Challenges

Challenge#2: Preserving Data Ordering

* In the current HotStorage version, ByteExpress preserves ordering between the NVMe CMD
and its associated 64-byte payload chunks through two complementary mechanisms.

» First, on the host side, the NVMe driver guarantees exclusive access to each SQ using spin locks.
We leverage this by inserting both the CMD and its payload chunks while holding the lock.

« Second, on the device side, the controller preserves inter-SQ ordering by fetching subsequent
entries exclusively from the same SQ once a ByteExpress-applied CMD is detected

@ Access Turn
Admin SQ I/0 SQ 1 I/0SQ?2 I/0 SQN-1

i Queue Access Order E)

e _

TR S

- ByteExpress
Payload Chunks

|:| NVMe I/0 CMD

I
ByteEXxpress — Evaluation

We implemented” and evaluated ByteExpress on a Linux host machine
connected to the Cosmos+ OpenSSD platform (PCle Gen2 8-lane connection).

« Host Machine

 64-Core Intel Xeon Gold 6226R CPU
« 384 GB of DDR4 Memory

« Cosmos+ OpenSSD
 Xilinx Zyng-7000 FPGA
1 TB NAND Flash
1 GB On-Board DDR3 Memory

Cosmos+ OpenSSD Platform
a widely-used open-source SSD prototype board

* Open-source github repository: https://github.com/junttana/byteexpress

https://github.com/junttang/byteexpress

ByteExpress — Benefits

We evaluated PCle traffic* and transfer latency (with NAND 1/O disabled on
the OpenSSD) across various payload sizes using NVMe passthrough, issuing
1 million writes per configuration with NVMe PRP, BandSIlim, and ByteExpress.

/ / —
6 NVMe PRP (Traffic) -»%- NVMe PRP (Latency) 109
BandSlim (Traffic) <>- BandSlim (Latency) 80

~ 9 ByteExpress (Traffic) - ByteExpress (Latency) - Both ByteE>_<pre_s_s and
%4_) . % BandSlim S|gn|f|can_tly
5 = reduced PClIe traffic
% 3 s < for payloads smaller than
= @ 4 KB compared to PRP.

1 20 = Up to 96.3% of reduction

o
o

[[|
32 64 128 256 512 1K 2K 4K
Payload Size (Bytes)

* PCle traffic was measured via Intel Performance Counter Monitor (PCM)

ByteExpress — Benefits

We evaluated PCle traffic* and transfer latency (with NAND 1/O disabled on
the OpenSSD) across various payload sizes using NVMe passthrough, issuing
1 million writes per configuration with NVMe PRP, BandSIlim, and ByteExpress.

/ / —100
6 NVMe PRP (Traffic) -»%- NVMe PRP (Latency)
BandSlim (Traffic) <>- BandSlim (Latency) 39.8%

~97 ByteExpress (Traffic) - ByteExpress (Latency) e ? : :
m ;) Interestingly, in the 64-
S 4 60 @ byte to 4 KB range,
& 3 < ByteExpress outperformed
£ (405 BandSlim by up to 39.8%

27 ~ in traffic reduction.

-20
1_
O [I [[[O

[[|
32 64 128 256 512 1K 2K 4K
Payload Size (Bytes)

* PCle traffic was measured via Intel Performance Counter Monitor (PCM)

ByteExpress — Benefits

We evaluated PCle traffic* and transfer latency (with NAND 1/O disabled on
the OpenSSD) across various payload sizes using NVMe passthrough, issuing
1 million writes per configuration with NVMe PRP, BandSIlim, and ByteExpress.

/ /
-»%- NVMe PRP (Latency)

<>- BandSlim (Latency)
-=- ByteExpress (Latency)

NVMe PRP (Traffic)
BandSlim (Traffic)

ByteExpress (Traffic)
X7

’
4
/
’
’
53/
-,
’
’
.
-’

=B 404% " Al A% R

—~100

Lg &
(@) @))
(sr) Aouoje]

|
(\®)
()

I f [[I

[[|
32 64 128 256 512 1K 2K 4K
Payload Size (Bytes)

* PCle traffic was measured via Intel Performance Counter Monitor (PCM)

o

For transfer latency,
ByteExpress reduced
latency by up to 40.4%
over NVMe PRP

in the 32-128 byte range.

ByteExpress — Benefits

We evaluated PCle traffic* and transfer latency (with NAND 1/O disabled on
the OpenSSD) across various payload sizes using NVMe passthrough, issuing
1 million writes per configuration with NVMe PRP, BandSIlim, and ByteExpress.

/ /
-»%- NVMe PRP (Latency)

<>- BandSlim (Latency)
-=- ByteExpress (Latency)

72.0%
K X f e — S ——— - —— = X
G—=——"F

NVMe PRP (Traffic)
BandSlim (Traffic)
ByteExpress (Traffic)

—~100

Lg &
(@) @))
(sr) Aouoje]

|
(\®)
()

[[I

[[|
32 64 128 256 512 1K 2K 4K
Payload Size (Bytes)

* PCle traffic was measured via Intel Performance Counter Monitor (PCM)

o

Furthermore, ByteExpress
outperformed BandSlim
beyond 64 bytes, for
instance, achieving a 72%
reduction at 128 bytes.

ByteEXxpress

e evaluated PCle traffic* e
the OpenSSD) across variol
million writes per configur:

6 NVMe PRP (Traffic) -
BandSlim (Traffic) <> |
5 =N ByteExpress (Traffic) =

ByteExpress: A High-Performance and Traffic-Efficient
Inline Transfer of Small Payloads over NVMe

Junhyeok Park
junttang@sogang.ac kr
Sogang University
Seoul, South Korea

ABSTRACT

Recent computational storage devices enable host-side tasks
such as SQL filtering and key-value operations to be offloaded
to the device. However, these tasks often involve small pay-
loads, typically a few dozen to hundreds of bytes, which are
inefficiently handled by the conventional NVMe protocol due
to its page-based DMA mechanism. Even tiny payloads incur
4 KB PCle transfers, leading to severe bandwidth waste and
increased latency. Prior approaches either break NVMe com-
patibility or are only effective for very small payloads on the
order of a few dozen bytes. This paper presents ByteExpress,
a new mechanism that efficiently transmits small payloads
by placing them inline in 64-byte chunks directly into the
NVMe submission queue, immediately following the NVMe
command. press requires only slight modifi to
the NVMe driver and controller logic, while preserving full
compatibility with existing APIs and SSD architectures. We
implemented ByteExpress on the Linux NVMe driver and
OpenSSD, demonstrating up to 98% reduction in PCle traffic
and 40% and 39% lower latency compared to PRP and a state-
of-the-art approach, respectively, for sub-page payloads.

CCS CONCEPTS
« Information systems — Flash memory: Storage archi-
tectures; Storage management.

KEYWORDS
Non-Volatile Memory Express Protocol, Solid-State Drive.

ACM Reference Format:
Junhyeok Park, Junghee Lee, and Youngjae Kim. 2025. ByteExpress:
A High-Performance and Traffic-Efficient Inline Transfer of Small

“Y.Kim s the corresponding author.

Permission to make digital or hard copies of part or all of this wark for
‘personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the fullcitation on the first page. Copyrights for third-
party components of this work must be honored. For al other uses, contact
e uthor(s).

HotStorage 25, July 10-11, 2025, Boston, MA, USA

© 2025 Copyright held by the owner/author(s).

AC 4007-1947-9/2025/07.
https://doi.org/10.1145/3736548.3737837

Junghee Lee
i_lee@korea.ackr

Korea University
Seoul, South Korea

Youngjae Kim*
youkim@sogang,ackr
Sogang University
Seoul, South Korea

Payloads over NVMe. In 17th ACM Workshop on Hot Topics in Storage
and File Systems (HotStorage '25), July 1011, 2025, Boston, MA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3736545
3737837

1 INTRODUCTION

Recent advances in Solid-State Drive (SSD) technology have
led to increasingly powerful devices, with modern Non-
Volatile Memory Express (NVMe) SSDs now equipped with
multi-core Arm processors and substantial internal DRAM.
As these capabilities continue to evolve, SSDs are gradually
shifting from simple storage solutions to intelligent data-
processing devices, opening new opportunities for offloading
and executing tasks traditionally handled by the host [43].
These trends have led to the emergence of new classes of com-
putational storage devices, including Computational SSDs
(CSDs) that can execute user’s analytics tasks such as SQL fil-
ters inside the SSD [3, 14, 20], and Key-Value SSDs (KV-SSDs)
that natively support key-value operations within the device
by bypassing traditional file systems [11, 13, 19, 24, 33].

To interact with these new types of devices, users com-
monly employ the NVMe passthrough [17] (§2.1), wherein
application-level requests, such as SQL predicates for CSDs
or key-value pairs for KV-SSDs, are encoded as custom
NVMe Commands (CMDs) and sent directly to the device. In-
terestingly, a closer look at this new storage interface reveals
that the actual data payloads (i.e., predicates and key-value
pairs) transferred in such requests are often small (§2.2).
CSDs process filter operations based on computation task
specifications that typically require only a table identifier
and predicates, resulting in payloads of just tens to hundreds
of bytes [14]. Similarly, the values handled during real-world
key-value operations also tend to be a few dozen bytes in
size, as evidenced by Meta’s internal workload analysis [4].

Ironically, the conventional NVMe protocol is not well-
suited for handling such small payloads (§2.3). Specifically,
NVMe employs Physical Region Pages (PRPs) for data trans-
fer, which requires data to be transferred in 4 KB memory
page units. As a result, even a 32-byte payload incurs 4 KB of
PCle traffic, more than 130 greater than the requested size
(see Figure 1(c). This significant traffic bloating can lead to
increased latency and unnecessary power consumption [3],

h NAND 1/O disabled on
NVMe passthrough, issuing
3andSlim, and ByteExpress.

)0

Furthermore, ByteExpress
outperformed BandSIlim

ouale]

You can find more design and evaluation details in our paper.

We’d love for you to check it out!

* PCle traffic was measured via Intel Performance Counter Monitor (PCM)

Conclusion

Summary

« ByteExpress offers a lightweight, practical solution to the long-standing inefficiency of small, direct
data transfer over NVMe.

« By repurposing the NVMe submission queue to carry 64-byte payload chunks, ByteExpress
enables efficient, fine-grained small-data transmission without modifying SSD-internal architecture
or NVMe passthrough-based APIs.

Future Work

* We are planning to extend our work to support read operations by leveraging the NVMe
completion queue in a similar fashion.

» Additionally, we aim to enhance the design by removing the queue-level confinement and
enabling parallel chunk transfers.

» A comprehensive comparison with SGL under various PCle link speeds is also underway.

Thank You
QsA

Presenter: Junhyeok Park
Contact: junttang@soqganaqg.ac.kr

mailto:junttang@sogang.ac.kr

