
ByteExpress: A High-Performance and Traffic-Efficient
Inline Transfer of Small Payloads over NVMe

Junhyeok Park, Junghee Lee, and Youngjae Kim

Presenter: Junhyeok Park

Inside Today’s NVMe SSDs
Recent advances in SSD technology have led to increasingly powerful devices,
with modern NVMe SSDs now equipped with substantial internal DRAM and multi-
core ARM processors.

Samsung
Phoenix Controller
features 5 ARM Cortex-R7 cores

Samsung
LPDDR4-1866 DRAM
features a 1 GB capacity

Samsung
V-NAND V5
2 chips @ 4 Tbit

[1] TechPowerUp. “Samsung 970 EVO Plus 1 TB SSD Specs.” TechPowerUp, accessed June 20, 2025. [link]

https://www.techpowerup.com/ssd-specs/samsung-970-evo-plus-1-tb.d61

Inside Today’s NVMe SSDs
Recent advances in SSD technology have led to increasingly powerful devices,
with modern NVMe SSDs now equipped with substantial internal DRAM and multi-
core ARM processors.

[1] TechPowerUp. “Samsung 970 EVO Plus 1 TB SSD Specs.” TechPowerUp, accessed June 20, 2025. [link]

Samsung’s
Phoenix Controller
features 5 ARM Cortex-R7 cores

Samsung’s
LPDDR4-1866 DRAM
features a 1 GB capacity

Samsung
V-NAND V5
2 chips @ 4 Tbit

As these capabilities continue to evolve, SSDs are gradually shifting
from simple storage solutions to intelligent data-processing devices,

opening new opportunities for offloading and executing host-side tasks.

https://www.techpowerup.com/ssd-specs/samsung-970-evo-plus-1-tb.d61

Computational Storage Devices
These trends have led to the emergence of new classes of computational storage
devices, including …
• Computational SSDs (CSDs) that can execute

user’s analytics tasks such as SQL filters inside the SSD.
• Key-Value SSDs (KV-SSDs) that natively support

key-value operations within the device by bypassing traditional file systems.

Samsung SmartSSD
can achieve 2.8x faster
SQL query execution
on Parquet data [2]

[2] Samsung Electronics. Samsung SmartSSD Computational Storage Drive. Brochure, accessed June 20, 2025. [link]
[3] I. Park et al., "KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive Applications“, 2023 IEEE International Conference on Cluster Computing (CLUSTER). [link]

SK hynix KV-CSD
showed up to 10.6x
lower write latency
than RocksDB [3]

https://download.semiconductor.samsung.com/resources/brochure/Samsung%20SmartSSD%20Computational%20Storage%20Drive.pdf
https://ieeexplore.ieee.org/document/10319961

NVMe-Based New Storage Interface
To interact with these new types of devices, users commonly employ the NVMe
passthrough, wherein application-level requests, such as …
• SQL predicates for CSDs or
• key-value pairs for KV-SSDs,
are encoded as custom NVMe Commands (CMDs) and sent directly to the device.

NVMe Passthru Function
defined in libnvme/blob/master/src/nvme/ioctl.c

NVMe Passthru-based CSD & KV-SSD Interface
è enables seamless data exchange with these devices

without significantly modifying the kernel I/O stack

https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c

NVMe-Based New Storage Interface
To interact with these new types of devices, users commonly employ the NVMe
passthrough, wherein application-level requests, such as …
• SQL predicates for CSDs or
• key-value pairs for KV-SSDs,
are encoded as custom NVMe Commands (CMDs) and sent directly to the device.

NVMe Passthru Function
defined in libnvme/blob/master/src/nvme/ioctl.c

NVMe Passthru-based CSD & KV-SSD Interface
è enables seamless data exchange with these devices

without significantly modifying the kernel I/O stack

Interestingly, a closer look at this new storage interface reveals that
the actual data payloads (i.e., SQL predicates and key-value pairs)

transferred in such requests are often small.

https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c
https://github.com/linux-nvme/libnvme/blob/master/src/nvme/ioctl.c

The Advent of Small, Direct I/O
CSDs process filter operations based on computation task specifications that
typically require only a table identifier and predicates since the SSD is already
aware of table schema information [4].

[4] I. Jo et al., "YourSQL: a high-performance database system leveraging in-storage computing". Proc. VLDB Endow. 9, 12 (August 2016), 924–935. [link]
[5] Los Alamos National Laboratory. Laghos Sample Dataset. GitHub repository, accessed June 20, 2025. [link]

Example SQL Query from the Laghos 3D Mesh Dataset [5]
computes per-vertex average energy in a small 3D region

Extracted ‘Table Name’ and ‘Predicate Clause’

Table Name
Predicate Clause

1001 1101 0101 0110 …
(just exemplar binary codes)

Binary Encoded Message
specifies computation task (SQL filtering)

CSD
Payload

xx_36785.parquet

https://doi.org/10.14778/2994509.2994512
https://github.com/lanl-ocs/laghos-sample-dataset

The Advent of Small, Direct I/O
This results in payloads of just tens to hundreds of bytes.
è Even when expressed as a completely unoptimized SQL string without any

binary encoding, the total payload size remains small.

Example Queries Used in CSD Works [4 - 8]
showing the lengths of full string and table/predicate segments

[4] I. Jo et al., "YourSQL: a high-performance database system leveraging in-storage computing". Proc. VLDB Endow. 9, 12 (August 2016), 924–935. [link]
[5] Los Alamos National Laboratory. Laghos Sample Dataset. GitHub repository, accessed June 20, 2025. [link]
[6] Los Alamos National Laboratory. DeepWater Impact Dataset. GitHub repository, accessed June 20, 2025. [link]
[7] Los Alamos National Laboratory. VPIC: Vector Particle-In-Cell Simulation Code. GitHub repository, accessed June 20, 2025. [link]
[8] J. Kim, "Accelerating Data Analytics Using Object-based Computational Storage System in HPC“. In Supercomputing Conference (SC23), Denver, CO, USA, 2023. [link]

https://doi.org/10.14778/2994509.2994512
https://github.com/lanl-ocs/laghos-sample-dataset
https://github.com/lanl-asteroid-impact/deep-water-impact-dataset-1
https://github.com/lanl/vpic
https://sc23.supercomputing.org/proceedings/exhibitor_forum/exhibitor_forum_pages/exforum116.html

The Advent of Small, Direct I/O
Similarly, the values processed during real-world key-value operations are often just
a few dozen bytes in size, as shown by internal workload analyses from Meta [9]
and Twitter [10].

[9] Z. Cao et al., "Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook“. In Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST’20) [link]
[10] W. Daelemans et al., "Overview of PAN 2019: Bots and Gender Profiling, Celebrity Profiling, Cross-Domain Authorship Attribution and Style Change Detection. In Experimental IR Meets Multilinguality, Multi modality, and Interaction".
Proceedings of the 10th International Conference of the CLEF Association (CLEF 2019) [link]

Value Size CDF for RocksDB as a MySQL
Storage Layer in Meta’s Data Centers

Value Size Heatmap from MixGraph All_random
with Its Default Parameter Settings

https://dl.acm.org/doi/10.5555/3386691.3386712
https://dl.acm.org/doi/10.1007/978-3-030-28577-7_30

The Advent of Small, Direct I/O
These small values are persisted individually in KV-SSDs, in accordance with the
key-value pair-level transaction model defined in the NVMe key-value extension [11].

• As a result, small direct I/O operations are a natural and frequent part of KV-SSD behavior
in real-world scenarios.

• Although batching multiple key-value pairs into a single bulk PUT has been explored in some prior work, such
approaches may not always be applicable, particularly in use cases where fine-grained persistence is
desired for each key-value pair [12].

[11] NVM Express Inc. 2021. NVM Express Key Value Command Set Specification. Last Accessed: 2024-09-12. [link]
[12] etcd Authors. 2023. etcd Raft Log Durability and Performance. Last Accessed: 2025-05-25. [link]

https://nvmexpress.org/developers/nvme-specification/
https://etcd.io/docs/v3.5/faq/

The Advent of Small, Direct I/O
These small values are persisted individually in KV-SSDs, in accordance with the
key-value pair-level transaction model defined in the NVMe key-value extension [11].

• As a result, small direct I/O operations are a natural and frequent part of KV-SSD behavior
in real-world scenarios.

• Although batching multiple key-value pairs into a single bulk PUT has been explored in some prior work, such
approaches may not always be applicable, particularly in use cases where fine-grained persistence is
desired for each key-value pair [11].

[11] NVM Express Inc. 2021. NVM Express Key Value Command Set Specification. Last Accessed: 2024-09-12. [link]
[12] etcd Authors. 2023. etcd Raft Log Durability and Performance. Last Accessed: 2025-05-25. [link]

However, despite the prevalence of small payloads, the conventional
NVMe protocol is ironically ill-suited to handle them efficiently.

https://nvmexpress.org/developers/nvme-specification/
https://etcd.io/docs/v3.5/faq/

NVMe is Not Small I/O Friendly!
Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe PRP-Based Payload Transfer Mechanism

The host prepares the data in memory
pages and constructs an NVMe CMD
that specifies the (1) address and
(2) number of pages to transfer.

NVMe is Not Small I/O Friendly!
Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe PRP-Based Payload Transfer Mechanism

The CMD is submitted to the NVMe
driver.

1

NVMe is Not Small I/O Friendly!
Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe PRP-Based Payload Transfer Mechanism

The driver inserts the CMD into the
NVMe Submission Queue (SQ).

2

NVMe is Not Small I/O Friendly!
Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe PRP-Based Payload Transfer Mechanism

The driver triggers the doorbell
register in the PCIe Base Address
Register (BAR) space to notify the
device of a new submission.

3

NVMe is Not Small I/O Friendly!
Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe PRP-Based Payload Transfer Mechanism

The device, polling the doorbell
register, detects the submission and
performs a 64-byte Direct Memory
Access (DMA) fetch of the CMD.

4

NVMe is Not Small I/O Friendly!
Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe PRP-Based Payload Transfer Mechanism

The controller then reads (identifies)
the indicated host page addresses
and page counts within PRP entries.

5

NVMe is Not Small I/O Friendly!
Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe PRP-Based Payload Transfer Mechanism

The controller copies the correspond-
ding pages into device DRAM via
4 KB page unit DMAs.

6

NVMe is Not Small I/O Friendly!
Specifically, NVMe employs Physical Region Pages (PRPs) for data transfer, which
requires data to be transferred in 4 KB memory page units.

NVMe PRP-Based Payload Transfer Mechanism

Finally, the device signals completion
to the host.

7

NVMe is Not Small I/O Friendly!
As a result, even a 32-byte payload incurs 4 KB of PCIe traffic, more than 130×
greater than the requested size.

è This significant traffic bloating can lead to increased latency and unnecessary
power consumption, making it a critical bottleneck for frequent, small direct I/Os.

PCIe Traffic and Transfer Latency Traffic Amplification Factor

NVMe Scatter-Gather List ?
NVMe also supports Scatter-Gather Lists (SGLs), which can enable fine-grained
DMA transfer for small payloads.

However, SGLs are not supported across
all NVMe devices (because it is not mandatory),
and even when supported, the Linux kernel
is configured by default to use them
only for payloads larger than 32 KB.

è Accordingly, this work focuses on optimizing PRP-based transfers.

Linux Kernel’s NVMe SGL Size Threshold
defined in drivers/nvme/host/pci.c NVMe SGL-Based Payload Transfer

Mechanism

https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c
https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c
https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c
https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c

Existing Approaches Work! But…
Prior works have attempted to address this issue using two primary approaches:
(1) Bypassing the NVMe stack via

PCIe Memory-Mapped I/O (MMIO) to
enable byte-level writes directly to the device.

• Ex) 2B-SSD [ISCA `18], ByteFS [ASPLOS `25]

If a user application issues a Byte
Interface write request,

1

Prior works have attempted to address this issue using two primary approaches:
(1) Bypassing the NVMe stack via

PCIe Memory-Mapped I/O (MMIO) to
enable byte-level writes directly to the device.

• Ex) 2B-SSD [ISCA `18], ByteFS [ASPLOS `25]

Existing Approaches Work! But…

the data is memory-copied to the
device-mapped PCIe BAR region.

2

Prior works have attempted to address this issue using two primary approaches:
(1) Bypassing the NVMe stack via

PCIe Memory-Mapped I/O (MMIO) to
enable byte-level writes directly to the device.

• Ex) 2B-SSD [ISCA `18], ByteFS [ASPLOS `25]

Existing Approaches Work! But…

Writing to the device-mapped PCIe
BAR region results in a memory
write transaction over PCIe, which
automatically updates the corres-
ponding address in device memory.

3

Prior works have attempted to address this issue using two primary approaches:
(1) Bypassing the NVMe stack via

PCIe Memory-Mapped I/O (MMIO) to
enable byte-level writes directly to the device.

• Ex) 2B-SSD [ISCA `18], ByteFS [ASPLOS `25]

Existing Approaches Work! But…

If needed, the written data is coor-
dinated with data written through
the Block Interface, thru transaction
logs or similar methods to maintain
consistency.

4

Prior works have attempted to address this issue using two primary approaches:
(1) Bypassing the NVMe stack via

PCIe Memory-Mapped I/O (MMIO) to
enable byte-level writes directly to the device.

• Ex) 2B-SSD [ISCA `18], ByteFS [ASPLOS `25]

Existing Approaches Work! But…

Then, it notifies the host of the
completion.

5

Prior works have attempted to address this issue using two primary approaches:
(1) Bypassing the NVMe stack via

PCIe Memory-Mapped I/O (MMIO) to
enable byte-level writes directly to the device.

• Ex) 2B-SSD [ISCA `18], ByteFS [ASPLOS `25]

• Pros)
• This design allows for low-latency, fine-grained

data transfers [13] è High-Performance
• Can be integrated into a NVMe Controller Memory Buffer (CMB)

concept è Opportunity for Standardization
• Can be extended to utilize PCIe-based memory expansion

protocols such as Compute Express Link (CXL).

Existing Approaches Work! But…

[13] D. -H. Bae et al., "2B-SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). [link]

https://ieeexplore.ieee.org/document/8416845

Prior works have attempted to address this issue using two primary approaches:
(1) Bypassing the NVMe stack via

PCIe Memory-Mapped I/O (MMIO) to
enable byte-level writes directly to the device.

• Ex) 2B-SSD [ISCA `18], ByteFS [ASPLOS `25]

• Cons)
• The device must be (1) significantly modified to include

a new dedicated buffer memory, and (2) maintain transactional
coordination between the new Byte Interface for small payloads
and the existing block-based I/O path for large payloads.
è High Design and Manufacturing Costs

• On the host-side, NVMe passthrough-based APIs cannot be
reused, requiring the development of a new interface layer.
è Interface Redesign Overhead

Existing Approaches Work! But…

Prior works have attempted to address this issue using two primary approaches:
(1) Bypassing the NVMe stack via

PCIe Memory-Mapped I/O (MMIO) to
enable byte-level writes directly to the device.

• Ex) 2B-SSD [ISCA `18], ByteFS [ASPLOS `25]

• Cons)
• The device must be (1) significantly modified to include

a new dedicated buffer memory, and (2) maintain transactional
coordination between the new Byte Interface for small payloads
and the existing block-based I/O path for large payloads.
è High Design and Manufacturing Costs

• On the host-side, NVMe passthrough-based APIs cannot be
reused, requiring the development of a new interface layer.
è Interface Redesign Overhead

Existing Approaches Work! But…

This method requires substantial modifications to SSD architecture
and controller firmware, making it difficult to integrate with

existing NVMe-based CSDs or KV-SSDs.

Prior works have attempted to address this issue using two primary approaches:
(2) Embedding the payload inline within

one or more custom NVMe CMDs and
transmitting them in fragments.

• Ex) BandSlim [ICPP `24], [IEEE Micro `25]

Existing Approaches Work! But…

It embeds small payload fragments
directly into CMD fields and issues
a sequence of NVMe CMDs (each
carrying a portion of the data) to
create fine-grained PCIe traffic patterns.

Prior works have attempted to address this issue using two primary approaches:
(2) Embedding the payload inline within

one or more custom NVMe CMDs and
transmitting them in fragments.

• Ex) BandSlim [ICPP `24], [IEEE Micro `25]

• Pros)
• By utilizing the NVMe passthrough, this method offers

the advantage of requiring no significant modifications to SSD
architectures and protocols. è Relatively Easy Integration

• Cons)
• Frequent issuance of CMDs significantly increases protocol

overhead, particularly as the number of fragments grows.
è As a result, when the payload size exceeds just a few

dozen bytes (e.g., 64 bytes), the cost of repeated CMD
submission becomes a major performance bottleneck.

Existing Approaches Work! But…

Prior works have attempted to address this issue using two primary approaches:
(2) Embedding the payload inline within

one or more custom NVMe CMDs and
transmitting them in fragments.

• Ex) BandSlim [ICPP `24], [IEEE Micro `25]

• Pros)
• By utilizing the NVMe passthrough, this method offers

the advantage of requiring no significant modifications to SSD
architectures and protocols. è Relatively Easy Integration

• Cons)
• Frequent issuance of CMDs significantly increases protocol

overhead, particularly as the number of fragments grows.
è As a result, when the payload size exceeds just a few

dozen bytes (e.g., 64 bytes), the cost of repeated CMD
submission becomes a major performance bottleneck.

Existing Approaches Work! But…

This method loses scalability for larger payloads
due to repeated CMD generation and processing overhead

caused by its mandatory serialization.

“NVMe already enables fine-grained data delivery over PCIe.”
è This capability is embedded in the design of the NVMe SQ, where the host places a CMD

in memory and the device performs a 64-byte DMA fetch from the SQ’s tail.

In our paper, we present ByteExpress, a novel mechanism that efficiently transmits
small payloads while avoiding the said drawbacks of existing solutions.

At the heart of ByteExpress is a concise yet powerful insight:

If we reinterpret the CMD itself as a payload or a portion of payload, this mechanism
effectively becomes a built-in fine-grained I/O path.
è ByteExpress builds on this insight by placing the actual payload into the SQ in 64-byte chunks.

Proposed Solution: ByteExpress

Proposed Solution: ByteExpress
ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

The NVMe CMD is issued to the NVMe
driver as usual.

1

Proposed Solution: ByteExpress
ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

The NVMe CMD is submitted
to the SQ as usual.

2

Proposed Solution: ByteExpress
ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

(Here's where it differs) the payload
is immediately appended to the SQ
right after the just-submitted CMD,
in 64B units.

3

Proposed Solution: ByteExpress
ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

The driver rings the doorbell
register to notify the device of
a new submission, just as usual.

4

Proposed Solution: ByteExpress
ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

If the device detects ByteExpress
semantics when fetching a CMD,
it fetches the following payload
chunks from the same SQ in one
shot and copies them directly into
the data buffer.

5

Proposed Solution: ByteExpress
ByteExpress directly places the small payload, in 64-byte chunks, into the
NVMe Submission Queue (SQ) after the CMD itself.

Finally, the device signals completion
to the host, as usual.

6

ByteExpress – Key Design Challenges
Challenge#1: Identifying the Payload
• The NVMe driver already has full knowledge of the payload at submission time.

• The payload size is encoded in the data length field of the NVMe I/O CMD.
• The address is specified through the PRP entry fields during CMD construction.

• The field values provided via the nvme_passthru_cmd structure are preserved
in the corresponding bio request, which is fully accessible to the NVMe driver.

ByteExpress-Extended Linux Kernel NVMe Driver
open-sourced at https://github.com/junttang/byteexpress

https://github.com/junttang/byteexpress

ByteExpress – Key Design Challenges
Challenge#2: Preserving Data Ordering
• In the current HotStorage version, ByteExpress preserves ordering between the NVMe CMD

and its associated 64-byte payload chunks through two complementary mechanisms.
• First, on the host side, the NVMe driver guarantees exclusive access to each SQ using spin locks.

We leverage this by inserting both the CMD and its payload chunks while holding the lock.
• Second, on the device side, the controller preserves inter-SQ ordering by fetching subsequent

entries exclusively from the same SQ once a ByteExpress-applied CMD is detected

ByteExpress – Evaluation
We implemented* and evaluated ByteExpress on a Linux host machine
connected to the Cosmos+ OpenSSD platform (PCIe Gen2 8-lane connection).

• Host Machine
• 64-Core Intel Xeon Gold 6226R CPU
• 384 GB of DDR4 Memory

• Cosmos+ OpenSSD
• Xilinx Zynq-7000 FPGA
• 1 TB NAND Flash
• 1 GB On-Board DDR3 Memory Cosmos+ OpenSSD Platform

a widely-used open-source SSD prototype board

* Open-source github repository: https://github.com/junttang/byteexpress

https://github.com/junttang/byteexpress

ByteExpress – Benefits
We evaluated PCIe traffic* and transfer latency (with NAND I/O disabled on
the OpenSSD) across various payload sizes using NVMe passthrough, issuing
1 million writes per configuration with NVMe PRP, BandSlim, and ByteExpress.

* PCIe traffic was measured via Intel Performance Counter Monitor (PCM)

Both ByteExpress and
BandSlim significantly
reduced PCIe traffic
for payloads smaller than
4 KB compared to PRP.
è Up to 96.3% of reduction

96.3%

ByteExpress – Benefits
We evaluated PCIe traffic* and transfer latency (with NAND I/O disabled on
the OpenSSD) across various payload sizes using NVMe passthrough, issuing
1 million writes per configuration with NVMe PRP, BandSlim, and ByteExpress.

* PCIe traffic was measured via Intel Performance Counter Monitor (PCM)

Interestingly, in the 64-
byte to 4 KB range,
ByteExpress outperformed
BandSlim by up to 39.8%
in traffic reduction.

39.8%

ByteExpress – Benefits
We evaluated PCIe traffic* and transfer latency (with NAND I/O disabled on
the OpenSSD) across various payload sizes using NVMe passthrough, issuing
1 million writes per configuration with NVMe PRP, BandSlim, and ByteExpress.

* PCIe traffic was measured via Intel Performance Counter Monitor (PCM)

For transfer latency,
ByteExpress reduced
latency by up to 40.4%
over NVMe PRP
in the 32–128 byte range.

40.4%

ByteExpress – Benefits
We evaluated PCIe traffic* and transfer latency (with NAND I/O disabled on
the OpenSSD) across various payload sizes using NVMe passthrough, issuing
1 million writes per configuration with NVMe PRP, BandSlim, and ByteExpress.

* PCIe traffic was measured via Intel Performance Counter Monitor (PCM)

Furthermore, ByteExpress
outperformed BandSlim
beyond 64 bytes, for
instance, achieving a 72%
reduction at 128 bytes.72.0%

ByteExpress – Benefits
We evaluated PCIe traffic* and transfer latency (with NAND I/O disabled on
the OpenSSD) across various payload sizes using NVMe passthrough, issuing
1 million writes per configuration with NVMe PRP, BandSlim, and ByteExpress.

* PCIe traffic was measured via Intel Performance Counter Monitor (PCM)

Furthermore, ByteExpress
outperformed BandSlim
beyond 64 bytes, for
instance, achieving a 72%
reduction at 128 bytes.72.0%You can find more design and evaluation details in our paper.

We’d love for you to check it out!

Conclusion
Summary
• ByteExpress offers a lightweight, practical solution to the long-standing inefficiency of small, direct

data transfer over NVMe.
• By repurposing the NVMe submission queue to carry 64-byte payload chunks, ByteExpress

enables efficient, fine-grained small-data transmission without modifying SSD-internal architecture
or NVMe passthrough-based APIs.

Future Work
• We are planning to extend our work to support read operations by leveraging the NVMe

completion queue in a similar fashion.
• Additionally, we aim to enhance the design by removing the queue-level confinement and

enabling parallel chunk transfers.
• A comprehensive comparison with SGL under various PCIe link speeds is also underway.

Thank You
Q&A

Presenter: Junhyeok Park
Contact: junttang@sogang.ac.kr

mailto:junttang@sogang.ac.kr

